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Chaos, ergodicity, and the thermodynamics of lower-dimensional time-independent
Hamiltonian systems
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This paper uses the assumptions of ergodicity and a microcanonical distribution to compute estimates of the
largest Lyapunov exponents in lower-dimensional Hamiltonian systems. That the resulting estimates are in
reasonable agreement with the actual values computed numerically corroborates the intuition that chaos in such
systems can be understood as arising generically from a parametric instability and that this instability may be
modeled by a stochastic-oscillator equation@cf. Casetti, Clementi, and Pettini, Phys. Rev. E54, 5969~1996!#,
linearized perturbations of a chaotic orbit satisfying a harmonic-oscillator equation with a randomly varying
frequency.
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I. INTRODUCTION AND MOTIVATION

By definition, Lyapunov exponents probe the average
ear instability of chaotic orbits in an asymptotict→` limit
@1#. Their computation thus involves solving a matr
harmonic-oscillator equation with characteristic frequenc
that vary in time. In the context of a geometric description
which is convenient but by no means necessary—this eq
tion can be reinterpreted as a Jacobi equation~i.e., equation
of geodesic deviation! for motion in an appropriately define
curved space, e.g., by introducing the Eisenhart metric@2#.

It has been long known@3,4# that geodesic flows in a
space with everywhere negative curvature are unstable in
sense that nearby orbits diverge exponentially; and, for
reason, there was an implicit assumption in much ear
work that chaos could often be understood as a manifesta
of negative curvature. However, as emphasized by Pe
@5#, in many systems chaos cannot be attributed to nega
curvature. In many cases, the average curvature is posi
and indeed, there are many known examples of noni
grable Hamiltonian systems~e.g., the finite-order truncation
of the Toda@6# potential! which admit large measures o
chaos even though the curvature is everywhere positive.
curvature associated with the Eisenhart metric can be n
tive only if the second derivative of the potential becom
negative. Instead, it would seem natural to understand ch
as reflecting a parametric instability.

The Jacobi equation for a regular periodic orbit reduce
a multidimensional Hill equation, i.e., a harmonic-oscillat
equation with frequencies that exhibit a periodic time dep
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dence. For certain amplitudes and periodicities, the soluti
to such an equation remain bounded~or grow at most as a
power law in time!, this corresponding to stable period
orbits. However, for other amplitudes and periodicities, t
solutions grow exponentially, this corresponding instead
an unstable periodic orbit@7#.

Since chaotic orbits are aperiodic and~in some sense!
‘‘random,’’ one might instead suppose that one can model
Jacobi equation describing a linearized perturbation of a c
otic orbit as astochasticharmonic-oscillator equation, in
which the time-dependent frequencies vary in a random fa
ion. Given this assumption, the key issue becomes one
identifying the stochastic process, i.e., the form of the c
ored noise, which can capture correctly solutions to the
cobi equation.

If, for fixed potential and energy, almost all of the co
stant energy hypersurface is chaotic, as is true generically
D.2 ~provided that the energyE is the only time-
independent constant of the motion!, it would seem reason
able to infer that the parameters for the oscillator equat
should be estimatable assuming ergodicity. What this me
is that one may assume an invariant measure correspon
to a uniform population of the constant energy hypersurfa
i.e., a microcanonical distribution. If, furthermore, one
concerned with comparatively high-dimensional systems,
computationally awkward description in terms of a microc
nonical distribution can be replaced by a more user-frien
description based on a canonical distribution: In the spirit
ordinary thermodynamics, one may argue that the canon
and microcanonical ensembles should yield nearly ident
results in the largeD limit.

Given this logic, Casetti, Clementi, and Pettini@8# devel-
oped a ‘‘thermodynamic’’ theory of chaos that they used
obtain very good estimates of the values of the larg
Lyapunov exponents for two well-studied physical system
©2001 The American Physical Society14-1



to
v
d
b

y
e
le

be
e

r
n
n

t
o
n
n

he
a
a
v

th
s

x-
y

o
e
ey
a
ho

m
ie
of
ne
im
pr
hu
f
po

m

e

ese
he
ic-
m-
ix-
at

the
he
o a

m-
est

he
ha-
icle

ved

KANDRUP, SIDERIS, AND BOHN PHYSICAL REVIEW E65 016214
To do this, they~i! extracted from the fullD-dimensional
Jacobi equation an ‘‘isotropized’’ one-dimensional oscilla
equation that they argued should capture the chaotic beha
of typical orbits; ~ii ! derived the statistics of their assume
stochastic process in the context of a canonical ensem
description; and then~iii ! showed that, for two seemingl
generic models, solutions to the resulting equation yield r
sonable estimates of the largest Lyapunov exponent, at
for D.100 or so.

An obvious question is whether this logic may also
exploited to provide reasonable estimates of the larg
Lyapunov exponent for lower-dimensional systems, sayD
52 or D53. As discussed in the concluding section, the
are a variety of settings where it would be convenient if o
could estimate these values without resorting to detailed
merical computations. Arguably, however, this isnot the
most important point. Rather, the foremost objective is
implement a simple physical picture of the origins of cha
in lower-dimensional Hamiltonian systems. To the exte
that the Casettiet al. proposal, or some variant thereof, ca
provide reasonable estimates of Lyapunov exponents in t
systems, one would seem justified in visualizing chaos
arising from a parametric instability manifested by
stochastic-oscillator equation. In other words, one will ha
a clear alternative paradigm in terms of which to interpret
origins of chaos in lower-dimensional Hamiltonian system

II. AN ILLUSTRATIVE EXAMPLE

The validity of the formula for the largest Lyapunov e
ponent derived by Casettiet al.was tested for one simple to
model. The model is motivated by recent observations
elliptical galaxies, which suggest that these objects may
hibit significant deviations from axisymmetry and that th
often have a high-density cusp at their centroids, perh
associated with the presence of a supermassive black
The stars in a real galaxy populate a 6N-dimensional phase
space, withN denoting the number of stars in the syste
Considering that fine structure due to localized irregularit
and granularity will take a long time to manifest itself, it is
interest to model the system in terms of its coarse-grai
six-dimensional phase space in expectation that the t
scale associated with the coarse-grained potential will re
sent the shortest time scale for macroscopic evolution. T
a model potential for such systems comprises the sum o
anisotropic harmonic potential and a spherical Plummer
tential,

V~x,y,z!5 1
2 ~a2x21b2y21c2z2!2

MBH

Ar 21e2
, ~2.1!

with r 25x21y21z2, a2512D, b251, andc2511D. D
parametrizes the ellipsoidal geometry, ande functions as a
‘‘softening parameter’’ that is set ate51022 for numerical
simulations.

The theory of Casettiet al., described in Sec. IVA below
is analytic, and within this formalism,e acts as a ‘‘free pa-
rameter’’ that reflects uncertainty about the detailed dyna
cal properties of the phase space. One knowsa priori that far
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from MBH the potential is approximately quadratic in th
coordinates, and close toMBH it is approximately spherically
symmetric; the orbits are accordingly quasiregular in th
regions wherein there will be almost no chaotic mixing. T
theory correctly predicts zero chaotic mixing in a harmon
oscillator potential, thereby incorporating the former circu
stance, but it also incorrectly predicts nonzero chaotic m
ing in the spherically symmetric Plummer potential th
dominates nearMBH . Thus, a nonzeroe ‘‘regularizes’’ orbits
near the black hole. In view of these considerations,
value of e used in the theory was chosen by requiring t
magnitude of the harmonic potential to be comparable t
tenth of that of the Plummer potential at distances ‘‘r 5e ’’
from the centroid. The specific choice ise50.5MBH

1/3 .
Figure 1 compares the ‘‘true’’ Lyapunov exponents co

puted via numerical simulations with estimates of the larg
Lyapunov exponent derived using the Cassettiet al. formal-
ism, Eqs.~4.12!, ~4.15!, and ~4.16! below. The numerical
studies are described in detail in Ref.@9#, and the numeri-
cally generated curves derive from Fig. 5 in that paper. T
figure shows how the Lyapunov exponents pertaining to c
otic orbits scale against black-hole mass and total part

FIG. 1. ~a! Numerical~diamonds! and analytic~solid line! esti-
mates of the largest Lyapunov exponent for chaotic orbits evol
in the three-dimensional galactic potential~2.1! with a250.75, b2

51.0, andc251.25 as a function of black-hole massMBH for total
particle energyE51.0. ~b! The same forE50.6. ~c! E50.4.
4-2
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CHAOS, ERGODICITY, AND THE THERMODYNAMICS . . . PHYSICAL REVIEW E 65 016214
energyE. Interestingly, the analytic results agree closely w
the numerical results, particularly for intermediate-to-sm
values ofMBH . The agreement is still reasonable for lar
values ofMBH ~values that are in fact unphysically large!,
though the degree of agreement is less good. This is as
pected in that a black-hole mass that is comparable to
ellipsoidal mass will establish sizeable regions of regula
over the constant-energy hypersurface, and the fraction
chaotic orbits will be correspondingly lower@9#.

Figure 2 compares for fixedMBH50.1 the numerical and
analytic Lyapunov exponents versus ellipticity as para
etrized byD. Again, the analytic technique is seen to yie
reasonable estimates providedD is not too small. AsD de-
creases to zero, the potential approaches spherical symm
and is thereby integrable, supporting only regular orbits.
asmuch as the fundamental assumption underlying the
setti et al. formalism is that a substantial fraction of the o
bits is globally chaotic, the formalism clearly breaks dow
for spherical symmetry. As discussed in Ref.@9#, the fact that
the numerical curves exhibit a great deal of structure
manifested by the analytic predictions reflects the fact t
the phase space associated with the potential~2.1! is domi-
nated by resonances with frequenciesa, b, andc associated
with the harmonic contribution that are completely indepe
dent of initial conditions.

The results of Figs. 1 and 2 suggest that the s
dimensional phase space governed by the toy potential~2.1!
exhibits global chaos and associated rapid irreversible c
otic mixing over the bulk of the parameter space. Can
same be said for a lower-dimensional analog, i.e., one co
sponding to the toy potential in whichz5pz50? Figure 3,
which provides the same information as Fig. 1, but now fo
four-dimensional phase space, hints at the answer. One
sees the agreement between the numerical and analyti
sults to be less good, as would be expected, because
fraction of globally chaotic orbits is generally much reduc
over the six-dimensional case. Nonetheless, the results
still comparable within a factor of two.

FIG. 2. ~a! Numerical~diamonds! and analytic~solid line! esti-
mates of the largest Lyapunov exponent for chaotic orbits evol
in the three-dimensional galactic potential~2.1! i th MBH50.1 and
a2512D, b251, c2511D as a function ofD for total particle
energyE51.0. ~b! The same forE50.6.
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III. THE SCOPE OF THIS PAPER

The obvious question is whether the striking agreem
between theory and numerics described in the preceding
tion is simply a fortuitous accident, or whether it is in fa
generic. Can the Casettiet al. analysis provide reasonabl
estimates of the largest Lyapunov exponent for gene
lower-dimensional Hamiltonian systems?

Related to this is another important question: To wh
extent are the assumptions implemented by Casettiet al. jus-
tified for lower-dimensional systems? To the extent that th
are not justified, one might expect either~i! that the final
formula for x that they derived is comparatively insensitiv
to ~some of! the assumptions and/or~ii ! that modifying these
assumptions might lead to improved estimates.

These questions were addressed by a detailed explora
of orbits in the potentials discussed in Sec. II, as well as th
other ~classes of! potentials,

~1! The sixth-order truncation of the Toda lattice@6#, a
familiar two-dimensional potential,

V~x,y!5 1
2 ~x21y2!1x2y2 1

3 y31 1
2 x41x2y21 1

2 y41x4y

1 2
3 x2y32 1

3 y51 1
5 x61x4y21 1

3 x2y41 11
45 y6.

~3.1!

d

FIG. 3. Same as Fig. 1, but with all orbits restricted to t
two-dimensional~x, y! plane.
4-3
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KANDRUP, SIDERIS, AND BOHN PHYSICAL REVIEW E65 016214
~2! A multidimensional generalization of the dihedral p
tential @10#, for one particular set of parameter values, allo
ing for D52 throughD56,

V~q1 ,...,qD!52(
i 51

D

qi
21

1

4 S (
i 51

D

qi
2D 2

2
1

4 (
i , j 51

D

qi
2qj

2.

~3.2!

~3! A generalization of the Fermi-Pasta-Ulam~FPU! b
model @11# with

V~q1 ,...,qD!5(
i 51

D

@ a
2 @qi 112qi #

21 b
4 ~qi 112qi !

4#,

~3.3!

with qD11[q1 , allowing for D53 throughD56 ~the spe-
cial caseD52 is integrable!. For a51, Eq.~3.3! reduces to
the standard FPU model; fora,0, the potential admits ex
trema that are local maxima, so that the local mean curva
can become negative. The casea51 andb50.1 was consid-
ered by Casettiet al. for much larger values ofD.

Section IV of this paper begins by providing a terse ma
ematical summary of the formalism introduced by Cas
et al. to estimate the values of the largest Lyapunov expon
in higher-dimensional systems. This mathematical struc
is then restated in much simpler physical language and
resulting reformulation is used to suggest how their analy
could be reformulated for lower-dimensional systems. S
tion V summarizes the results of extensive simulations in
potentials~2.1! and ~3.1!–~3.3!, which were used to test th
validity of the original assumptions. Section VI then turns
the actual values of Lyapunov exponents estimated using
general approach, considering both the ‘‘true’’ Lyapunov e
ponents, defined in at→` limit, and short-time Lyapunov
exponents@12# appropriate for orbit segments of compar
tively short duration. Estimates of the latter for a variety
different orbit segments evolved in the same potential w
the same energy reveals an important point: Even when
estimated short-time exponentsxest differ from the ‘‘true’’
exponentsxnum computed numerically by as much as a fac
of two, their values tend to be strongly correlated. For
ample, orbit segments for whichxest is especially small cor-
respond, in general, to orbits for which the numericalxnum is
also especially small. In this sense, it is clear that, even if
Casettiet al. formula for x is not completely satisfactory, i
doescapture some important aspects of the flow. Section
concludes by summarizing the principal conclusions and
cussing potential implications and extensions.

IV. CHAOTIC MOTION AS A STOCHASTIC PARAMETRIC
INSTABILITY

A. The proposal of Casetti, Clementi, and Pettini

The starting point is the reformulation of a time
independent Hamiltonian system as a geodesic flow in
appropriately defined curved space. This can be done
variety of different ways, the best known of which involve
implementing Maupertuis’ Principle@13#, which leads to the
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Jacobi metric. However, from a practical perspective,
most convenient choice is to work with the Eisenhart me
@2#.

Given aD degree-of-freedom Hamiltonian system chara
terized by a Lagrangian

L5T2V5 1
2 ai j q̇

i q̇ j2V~q1,...,qD!, ~4.1!

with motion defined on some manifoldM, consider the ex-
tended manifold M3R2, with coordinates
(q0,q1,...,qD,qD11), and introduce the Eisenhart metric

ds25gmn dxmdxn

5ai j dqi dqi22V~q!dq0 dq012 dq0 dqD11.

~4.2!

Setting q05t and qD115t/22*0
t dt8L(q,q̇) yields ds2

5dt2. Without loss of generality, one can setai j 5d i j , mak-
ing the kinetic energy a sum of quadratic contributio
(q̇i)2/2, in which case the geodesic equations reduce to N
ton’s equations of motion. Correspondingly, the Riema
tensor simplifies greatly; its only nonvanishing compone
are

R0i0 j5
]2V

]qi]qj , ~4.3!

and the Jacobi equation for a linearized perturbation
comes

j̈ i1d i j R0 j 0kj
k50, ~ i 51, . . . ,D !. ~4.4!

Were the Riemann components entering into Eq.~4.4! ev-
erywhere negative, an arbitrary perturbation would alwa
grow exponentially fast. Everywhere negative curvature i
plies chaotic behavior and positive Lyapunov expone
@3,4#. The important point, however, is that, because of pa
metric instability, one can have chaotic orbits with positi
Lyapunov exponents even if the curvature is everywh
positive. If, following Casettiet al., one assumes that th
curvature varies ‘‘randomly’’ along a chaotic orbit, Eq.~4.5!
reduces to a stochastic-oscillator equation of the form

d2j i

dt2
1kj

i ~ t !j j50, ~ i 51, . . . ,D !, ~4.5!

where the matrixkj
i is characterized completely by its stati

tical properties. However, it is well known that, even ifkj
i is

positive definite for all times,j i can grow exponentially@14#.
Especially in high dimensions, matrix equations beco

difficult to solve either numerically or analytically. For thi
reason, Casetti et al. proceeded by replacing thi
D-dimensional equation with a simpler one-dimension
equation that aims to capture its ‘‘average’’ behavior. F
mally, they start by observing that the Riemann tensor m
be decomposed into two pieces

Rjkl
i 5

1

D21
~Rji dk

i 2Rjkd l
i !1Wjkl

i , ~4.6!
4-4
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whereRi j is the Ricci tensor andWjk
i is the Weyl projective

tensor. For the case of an isotropic space, the Weyl te
vanishes identically andRjl q̇

j q̇l /(D21) reduces to the~con-
stant! sectional curvature. The crucial assumption then
that, even though the space is not isotropic, it should app
nearly isotropic when viewed on comparatively large sca
In the context of such a ‘‘quasi-isotropic’’ approximation,Rk

i

andwk
i 5d i j Wjlk

l become diagonal, and Eq.~4.6! reduces to a
one-dimensional equation of the form

d2j

dt2
1k~ t !j50. ~4.7!

All that remains is to specify the statistical properties of t
random processk(t).

For a generic Hamiltonian system, the form ofk could be
quite complex. However, given the assumption thatD is
large, one might expect that the complicated details w
largely wash out. Thus, Casettiet al.argue in the spirit of the
central limits theorem that the curvature fluctuations in d
ferent directions may be approximated as nearly indepen
and, at any instant, Gaussianly distributed. It then follo
that

d2j

dt2
1Vj1shj50, ~4.8!

where, in terms of the quantityK5]2V/]qi]qi[DV, which
has mean̂K& and dispersiondK, the quantityV5^K&/(D
21), s5dK/AD21, and h is Gaussian noise with zer
mean and unit variance. The factors involvingD reflect the
fact that the curvature-driven motion in thei th direction is,
on the average, ‘‘shared’’ by theD21 orthogonal directions

Presuming further that the flow is ergodic and that~al-
most! all orbits are chaotic, the quantities^K& anddK may be
calculated assuming a uniform sampling of the constant
ergy hypersurface, i.e., a microcanonical distributionm
}dD(H2E). Alternatively, for sufficiently high dimensions
one may proceed instead by assuming a canonical distr
tion which, for largeD, is much simpler computationally
although it should yield nearly identical results.

To complete the characterization of the random proc
k(t), it remains to specify the autocorrelation functionG(t)
or, at least, the autocorrelation timet, which governs how
rapidly the curvature fluctuates along the orbit. This, Cas
et al. provide using another geometric argument. On the
hand, they identify a time scale

t1'
p

2AV1s
~4.9!

corresponding to the typical time between successive co
gate points, i.e., points where the Jacobi field of geode
deviation vanishes. On the other, they identify a time sca

t2'
V1/2

s
~4.10!
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corresponding to the length scale on which the fluctuati
become comparable to the average curvature. They then
lect as an appropriate autocorrelation time a valuet satisfy-
ing

t2152~t1
211t2

21! ~4.11!

so that

2t5
pAV

2AV~V1s!1ps
. ~4.12!

Casettiet al.suggest further thatG(t) might be well approxi-
mated by the oscillating function

G~ t !5
V2

p

sinvt

vt
, ~4.13!

which yields an autocorrelation time

t5
1

2v
5

tosc

4p
, ~4.14!

with tosc the oscillation period. However, this is largely i
relevant for their analysis. Granted the assumption of ad
tive Gaussian noise, the form of the color only enters into
final expression forx through the autocorrelation timet @14#.

Given a knowledge oft and the first two moments, Eq
~4.8! may be solved analytically using a technique develop
by van Kampen@14# to yield an estimated largest Lyapuno
exponent

x5
1

2 S L2
4V

3L D , ~4.15!

where

L5F2s2t1AS 4V

3 D 3

1~2s2t!2G1/3

. ~4.16!

B. Applying this proposal to lower-dimensional
Hamiltonian systems

The preceding may be reformulated without recourse
differential geometry in a setting that makes the physi
content of the assumptions more transparent and, as s
makes it clearer which assumptions might prove suspect
pecially for lower-dimensional systems.

The basic perturbation Eq.~4.5! may be derived trivially
from the original Hamilton equations

dqi

dt
5

]H

]pi
5d i j pj ~4.17!

and

dpi

dt
52

]H

]qi 52
]V

]qi ~4.18!

associated with the Hamiltonian
4-5
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H5T1V5 1
2 d i j pipj1V~q!. ~4.19!

It is clear that the introduction of a small perturbationqi

→qi1j i andpi→pi1z i leads to evolution equations of th
form

dj i

dt
5d i j z j and

dz i

dt
52

]2V

]qi]qj j j , ~4.20!

but combining these last two equations leads immediatel
Eq. ~4.4!.

The crucial assumption underlying the entire Casettiet al.
analysis is the assumption that, for the case of chaotic or
Eq. ~4.4! can be modeled by a stochastic-oscillator equati
For the case of ‘‘wildly chaotic’’ orbits or orbit segment
which are far from periodic, this assumption would see
quite reasonable. However, in lower-dimensional syste
one encounters the possibility of ‘‘sticky’’@15# orbit seg-
ments that, albeit characterized by positive short-ti
Lyapunov exponents, are ‘‘nearly regular’’ in visual appe
ance and have Fourier spectra with most of the power c
centrated at or near a few special frequencies@16#. This is
especially common forD52, where cantori@1# can serve as
entropy barriers, confining a chaotic orbit near a regular
land for surprisingly long times. To the extent that such or
segments behave in a nearly regular fashion, the assum
of nearly random behavior is clearly suspect, and one m
anticipate that a stochastic-oscillator equation cannot pr
completely satisfactory. Alternatively, to the extent that t
‘‘sticky’’ behavior is rare, such an equation might be e
pected to provide a reasonable starting point.

The assumption of ‘‘quasi-isotropy’’ may also be unde
stood in very simple physical terms: Instead of consider
the D-dimensional Eq.~4.4!, which involves the full second
derivative matrix ofV, it is assumed that, on the averag
each direction in configuration space is statistically identic
so that one can consider insteadD identical one-dimensiona
equations. In this context, the only question concerns
proper identification of the quantity to play the role of th
squared frequencyk(t). The Casettiet al. prescription states
that the relevant information about stability is contained
the trace of the second derivative matrix, so thatk(t) should
be proportional toDV5]2V/]qi]qi . The factor ofD21
entering into Eq.~4.8! reflects the fact that the perturbatio
driving the chaos is ‘‘shared’’ amongD21 dimensions.@Re-
call that, in a time-independent Hamiltonian system, ther
always one direction of neutral stability corresponding
translation along the orbit fromqi(t) to qi(t1dt).#.

This assumption of quasi-isotropy seems especially
sonable for largeD where, on average, different directions
the configuration space should look much the same, but
comes more suspect in lower dimensions. In principle,
can relax this assumption by working with the full matr
equation. As a practical matter, however, this becomes q
cumbersome forD@2. For this reason, most of the followin
analysis will retain the assumption of quasi-isotropy. Wh
happens when this assumption is relaxed for tw
dimensional systems is considered briefly in Sec. VI.
would in fact appear that, at least forD52, relaxing this
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assumption does not, in general, yield significant impro
ment in the estimated value of the largest Lyapunov ex
nent.

For generic Hamiltonian systems with largeD, one antici-
pates that~almost! all the orbits on a constant-energy hype
surface are chaotic. Granted the assumption of ergodicit
then follows that, over sufficiently long time scales, an or
eventually samples a microcanonical distribution. This i
plies that, when estimating a Lyapunov exponentx(E), as
defined in an asymptotict→` limit, one may assume tha
the statistical properties of the curvature experienced by
orbit are given correctly by a microcanonical distribution. B
contrast, for lower-dimensional systems, especiallyD52,
one anticipates instead that a generic potential will adm
coexistence of large measures of both regular and cha
orbits, so that the assumption of a microcanonical distri
tion is not justified. Rather, granted the assumption of erg
icity, one would anticipate the existence of a different inva
ant distribution, corresponding to a uniform population
those portions of the constant energy hypersurface that
accessible to a chaotic orbit with specified initial conditio
It is not clear how this distribution could be computed an
lytically. However, as described in Sec. V, numerical a
proximations to this invariant distribution may be genera
straightforwardly through a time-series analysis of orb
evolved numerically.

Even if a microcanical distribution is justified, the a
sumption of Gaussian fluctuations is problematic. For la
D, this assumption may be motivated with a fair degree
rigor via a central limits theorem argument, supposing t
the distribution of values ofDV involves a convolution ofD
nearly independent distributions for the separate compon
]2V/]qi]qi ~no sum over indices!. For very smallD, this is
clearly not justified, and the minimum value ofD for which
the Gaussian approximationis justified must depend to a
certain extent on the form of the individual distributions.
will be seen in Sec. V that, for the model systems~3.2! and
~3.3!, the convergence towards a Gaussian is quite effici
and that the distributionN@DV# is reasonably well fit by a
Gaussian even forD as small as 3 or 4. It will also be see
that, at least for distributionsN@DV# that are not too skew
deviations from a Gaussian do not change the estima
value of the largest Lyapunov exponent all that much.

The formula for the autocorrelation timet motivated by
Casettiet al. is somewhatad hoc in that, unlike the other
crucial inputsV ands, it cannot be derived directly from a
microcanonical distribution. However, the basic scaling i
plicit in t may again be inferred relatively simply. As will b
seen below,V ands are typically comparable in magnitude
They both reflect statistical properties ofDV and, as such,
scale~within factors of order unity! as V̄/R2, whereV̄ rep-
resents a typical value of potential andR is a characteristic
length scale, i.e., the size of the configuration space reg
probed by an orbit. Assuming ‘‘virialization,’’ i.e., that th
mean potential and kinetic energies of the orbits are com
rable in magnitude, it follows thatV̄;v2, wherev denotes a
typical orbital speed. However, this implies thatV;s
;v/R[tD

21, wheretD denotes a characteristic dynamical
4-6
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crossing time. Allowing for the fact that the characteris
scale on whichV changes significantly is typically somewh
smaller than the size of region accessible to the orbit lead
the obvious physical conclusion thatt should be comparable
to, but somewhat smaller than, the time required for an o
to travel from one side of the system to another.

Implicit in the Casettiet al. analysis is the assumptio
that the stochastic processk(t) corresponds to state
independent, additive noise, so that, e.g., the autocorrela
time t on which the curvature changes is independent of
value of the curvature. Strictly speaking, this assumpt
cannot be correct. If, e.g., an orbit is in a region whereV is
especially small, its kinetic energy, and hence, its veloc
will be especially large, so that the orbit will move ve
quickly to a different region whereV, and hence in genera
DV, is very different. If, instead, the orbit is in a regio
whereV is especially large, it will move more slowly so tha
DV might be expected to change more slowly. The autoc
relation timet of Eq. ~4.13! represents an average over
variety of orbits with very different values ofV. One might
anticipate that these differences will tend to wash out
large D, but there is no obvious reason why this should
true for smallerD.

One final point. It is clear that, for smallD, one cannot
pass from a microcanonical to a canonical description. O
must work directly with the microcanonical measurem
}dD(H2E). This, however, is not a major problem. For aD
degree of freedom system, the microcanonical distribut
corresponds to a configuration space density

f ~qi !}H ~E2V!~D22!/2 if V<E;

0 if V.E,
~4.21!

but, given this formula forf, it is straightforward, at leas
numerically, to compute the distributionN@DV# and/or any
moments of the distribution.

V. TESTING THE BASIC ASSUMPTIONS

A. What was computed

To test the validity of the basic assumptions require
comparison of real orbital data with predictions made ass
ing a microcanonical distribution. The requisite orbital da
were generated and analyzed as follows.

For given choices of potential and total energy, a coll
tion of N51000 initial conditions were selected, and each
these was integrated into the future for a total timeT corre-
sponding to between;100 and 2000 characteristic crossin
times tD . The numerical integration simultaneously track
the evolution of a small initial perturbation, periodical
renormalized in the usual way@1# so as to yield an estimat
of the largest~short-time! Lyapunov exponent for the orbi
segment. Configuration space data, recorded at fixed in
vals dt, were used to generate a time series$K j (ndt)% for
each of the segments in the 1000 orbit ensemble that
deemed to be chaotic.dt was typically so chosen that eac
segment was sampled by 2560 points. Distinctions betw
regular and chaotic were implemented through the introd
tion of a threshold valuexmin : if the computedx,xmin the
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orbit segments were assumed to be regular. Combining
the orbital data for all the chaotic orbits allowed the comp
tation of the bulk momentŝK& and dK where, recall,K
5DV. Binning the combined data into 1000 bins yielded
numerical representation of the distributionN@K#.

A discretized representation of the average autocorrela
function G(t) was computed by selecting a representat
ensemble of 5120 initial conditions, evolving each of the
into the future for an extended timeT>2048, so as to gen
erate a set of well-mixed ‘‘random’’ phase-space poin
identifying each of theNc<N orbit segments that were cha
otic, and, by extending the integrations for an additional ti
T851024, constructing

G~ndt !5
1

Nc^K
2& (

j 51

Nc

DK j~T!DK j~T1ndt !. ~5.1!

Here,DK j[K j2^K&, and the quantitieŝK& and ^K2& rep-
resent averages computed for all the chaotic orbital data
T,t,T8. Ideally, one should compute the autocorrelati
time t using the defining relation

E
0

`

dt G~ t !5^K2&t. ~5.2!

Given, however, thatG is typically a rapidly oscillating func-
tion ~period;tD! with an envelope that damps very slowl
such a computation proved unreliable. A seemingly be
measure oft or, at least, of howt scaled with energyE for
fixed potential, was obtained by computing the periodtosc
associated with the oscillations.

Predictions associated with a microcanonical distribut
were computed as follows: The microcanonical distributi
m}dD(H2E) implies the configuration-space probabili
density~4.22!; but, given thisf, it is straightforward to com-
pute the value of any configuration space functiong(q). Nu-
merical representations of the distributionN@K# associated
with a microcanonical distribution were computed by~i! di-
viding the occupied configuration space into a collection
M hypercubes,~ii ! deciding randomly whether or not t
sample each hypercube, using a weighting}(E2V)(D22)/2

as evaluated at a random point in the cube,~iii ! in the event
that the hypercube was to be sampled, locating a point in
cube at a randomly chosen location, and then~iv! binning the
resulting collection of points into 1000 bins.

Granted the assumption of a Gaussian distribution of c
vatures, estimates of the Lyapunov exponentx can be, and
were, computed using Eq.~4.16!, which does not require the
assumption of a microcanonical population. When the
sumption of a Gaussian distribution is relaxed, an analy
solution is not possible in general, so thatx was obtained
instead from a numerical computation, with the random c
vature generated initially by samplingN@K#, held constant
for the autocorrelation timet, and then replaced by anothe
randomly chosen curvature@17#.
4-7
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B. What was found

1. N[K] and its first two moments

Figure 4 exhibits the energy-dependence of the quant
^K& anddK for chaotic orbits in the dihedral potential wit
D52 and 3, computed both from time-series data~dashed
lines! and assuming a microcanonical distribution~solid
lines!. Overall, one observes excellent agreement betw
the numerical and analytic predictions, particularly for t
first moment ^K&. The best overall agreement obtains f
lower energies where, even forD52, the measure of regula
orbits is comparatively small and ‘‘stickiness’’ seems co
paratively unimportant.

For D52 at higher energies, sayE.1.0 or so, it appears
that a third of the constant energy hypersurface, or e
more, corresponds to regular orbits, so that one is clearlynot
justified in assuming a microcanonical distribution. Ho
ever, it is evident that the predictions based on a micro
nonical distribution remain quite good. That this should
the case is not really surprising. Presuming that the reg
islands are not concentrated preferentially at regions wh
DV is especially large or small, it would seem reasonable
assume that, in a sufficiently coarse-grained sense, ch
orbits still go ‘‘all over’’ the energetically allowed regions o
configuration space. To the extent, however, that this be t
one might expect moments approximating the moments
propriate for a microcanonical distribution which, forD
52, implies @cf. Eq. ~4.21!# a uniform configuration spac
density. Figure 5 exhibits analogous data for the FPU po
tial with D54 and 6, generated for parameter valuesa
51.0 andb50.1.

The thick solid curves in panels~a!–~d! of Fig. 6 exhibit
distributions of curvatures,N@K#, for the dihedral potentia
with D52 and 6 generated assuming a microcanonical
tribution. The corresponding curves in Fig. 7 exhibit ana
gous distributions for the FPU potential forD54 and 6.
Panels~e! and ~f! in Fig. 6 show the time series and micro

FIG. 4. ~a! The mean curvaturêK& for chaotic orbits in theD
52 dihedral potential as a function of energyE, computed assum
ing a microcanonical distribution~solid line! and extracted directly
from orbital data~dashed line!. ~b! The associated dispersiondK.
~c! ^K& for D53. ~d! dK for D53.
01621
s

n

-

n

a-
e
ar
re
o
tic

e,
p-

n-

s-
-

FIG. 5. ~a! The mean curvaturêK& for chaotic orbits in theD
54 FPU potential witha51.0 andb50.1 as a function of energy
E, computed assuming a microcanonical distribution~solid line!
and extracted directly from orbital data~dashed line!. ~b! The asso-
ciated dispersiondK. ~c! ^K& for D56. ~d! dK for D56.

FIG. 6. ~a! The distribution of curvatures,N@K#, for chaotic
orbits with energyE51.0 in theD52 dihedral potential, computed
assuming a microcanonical distribution~thick-solid line! and from
orbital data for an ensemble evolved for timest51024 and 3172.
~b! N@K# for D52 andE56.0. ~c! N@K# for D56 andE51.0. ~d!
N@K# for D56 and E56.0. ~e! N@K#, as generated from time
series data fort53172, forE51.0 withD53, D54, andD55. ~f!
N@K# for E51.0 with D53, D54, andD55, now generated as
suming a microcanonical distribution.
4-8
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canonical predictions for the dihedral potential in~from left
to right! D53, 4, and 5. It is evident that the microcanonic
distributions for the dihedral potential withD52 are not
even remotely Gaussian in shape. However, it is also ap
ent that, for all the other cases, the distribution is in f
reasonably well fit by a Gaussian, althoughN@K# typically
has a slight skew and can manifest appreciable deviation
large uK2^K&u.

The other curves in Figs. 6~a!–6~d! and in Fig. 7 represen
distributionsN@K# generated from time-series data. Figure
and the first three panels of Fig. 6 display two numeri
curves, one representing data for 0,t,1024 and the othe
for 2048,t,3072. Figure 6~d! also includes a third numeri
cal curve, generated for 8192,t,9216. For the two energie
exhibited in theD52 dihedral potential,E51.0 and 6.0,
there exist large measures of both regular and chaotic o
and, for this reason, the time-seriesN@K# differs signifi-
cantly from the microcanonicalN@K#. However, the en-
sembles of initial conditions used to generate the time-se
distributions evolved towards an invariant~albeit nonmicro-
canonical! distribution relatively quickly, so that the two nu
merical curves very nearly overlap.

For the dihedral potential withD>3 and for the FPU
potential withD>4, almost all the orbits appear to be ch
otic, so that, assuming ergodicity, the microcanonicalN@K#
and a truly representative time-seriesN@K# should coincide
up to statistical uncertainties. However, for the cases ex
ited in Figs. 6~c! and 6~d! and Fig. 7, the initial ensemble
only converged towards an invariant distribution on a co
paratively long time scale, so that the two~or more! time-
series curves differ appreciably from one another. In e
case, the later time sampling~s! yielded distributionsN@K#
that more closely approximated the microcanonicalN@K#.

The preceding suggests that one may use the form of
distributionN@K# as a robust diagnostic in terms of which
probe the approach towards ergodicity. Ergodicityper seis
an assumption regarding thet→` limit and, even assuming

FIG. 7. ~a! The distribution of curvatures,N@K#, for chaotic
orbits with energyE520 in theD54 FPU potential witha51.0
and b50.1, computed assuming a microcanonical distribut
~thick-solid line! and from orbital data for an ensemble evolved f
timest51024 and 4196.~b! N@K# for D54 andE5320.~c! N@K#
for D56 andE520. ~d! N@K# for D56 andE5320.
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ergodicity, there remains an obvious question: How lo
must one evolve some ensemble of initial conditions bef
its time-averaged density closely approximates the den
associated with a constant population of the accessible p
space regions? Comparing the distributionN@K# associated
with an evolving ensemble with theN@K# associated with a
microcanonical distribution can provide a useful diagnos
for probing the extent to which the ensemble has evolv
towards a time-independent invariant distribution.

It is well known that different chaotic orbit segments
the same connected phase-space region can exhibit v
different short-time Lyapunov exponents, and that the val
of these short-time exponents may correlate significan
with position. For example, chaotic segments near reg
islands tend to be much less unstable than wildly cha
segments located in the middle of the stochastic sea.
might, therefore, expect that orbit segments with especi
large or small short-time exponents would be characteri
by different curvatures. For potentials and energies wh
almost all the orbits are chaotic and ‘‘stickiness’’ is rare, th
segregation should be minimal; but for potentials whe
there is a coexistence of large measures of both regular
chaotic orbits, and where ‘‘stickiness’’ is pronounced, th
effect should be much more pronounced.

As illustrated in Fig. 8, this intuition was corroborate
numerically. The top panel of Fig. 8 was generated forE5
20.5 in theD52 dihedral potential, an energy where th
regular regions are extremely small, so that a representa
ensemble of 1000 initial conditions, integrated for a timeT
51024, yielded no regular orbits. The orbits generated fr
these initial conditions were divided into five quintiles, d
pending on the values of their short-time Lyapunov exp

FIG. 8. ~a! The distribution of curvatures,N@K#, for a represen-
tative ensemble of 1000 orbits with energyE520.5 in theD52
dihedral potential. The five lower curves represent subdistributio
generated by dividing the ensemble into five quintiles based on
values of the short-time Lyapunov exponents for the orbits. T
near-horizontal upper curve represents the distributionN@K# pre-
dicted by a microcanonical distribution; the other, more jagged
per curve represents the distributionN@K# associated with the full
1000 orbit ensemble, given by the sum of the five lower curves.~b!
The same forE56.0.
4-9
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nents, and the lower-five curves in this panel exhibit in
vidual subdistributionsN@K# computed for each quintile
The four quintiles corresponding to the larger values ox
yielded distributions that were nearly identical. The lowe
quintile was again quite similar, but did manifest some n
ticeable differences: This subdistribution, corresponding
the thick-solid line, is distinctly underrepresented at very l
values ofK and over represented at very largeK, and, unlike
the other four quintiles, appears to be a slowly decreas
function of K in the interval 0,K,7.5. The sum of these
five subdistributions~with a different normalization from the
subdistributions! corresponds to the slightly jagged upp
curve, which is essentially identical, modulo statistical u
certainties, to the smoother curve computed for a micro
nonical distribution.

The lower panel of Fig. 8 exhibits analogous data forE
56.0, again in theD52 dihedral potential. In this case,
1000 orbit ensemble was divided instead into a ‘‘quintile’’
332 regular orbits and four‘‘quintiles’’ each comprised
167 chaotic orbits, but the resulting subensembles were
lyzed identically. The lower solid curve peaking atK;13
represents the 332 regular orbits, and the three nearly i
tical curves that have a local minimum atK;13 correspond
to the chaotic orbit segments with the largest short-ti
Lyapunov exponents. The intermediate dashed curve co
sponds to the chaotic orbits with the smallest short-ti
Lyapunov exponent, the majority of which could be reaso
ably classified as ‘‘sticky.’’ The totalN@K# given as a sum of
the four chaotic ‘‘quintiles’’ is represented by the upper cur
with a local minimum atK;13. The upper curve corre
sponding to a nearly flat profile again corresponds to a
crocanonical distribution.

2. The autocorrelation timet

As suggested by Casettiet al., the autocorrelation func
tion G(t) is in fact an oscillating function of time, but i
tends to decay more slowly than with the 1/t envelope im-
plicit in Eq. ~4.14!. This slower decay is especially evide
for potentials and energies when ‘‘stickiness’’ is important,
which case a substantial ‘‘memory’’ may persist for doze
of oscillations. This is, e.g., evident in Figs. 9~a!–9~d!, which
exhibit data for the dihedral potential forD52 and 6. The
first two panels correspond to a very low-energyE520.5,
where, even forD52, almost all the orbits are chaotic. Th
second two panels correspond to a higher-energyE56.0
where, for bothD52 and 6, chaotic segments can be nea
periodic and have comparatively small short-time Lyapun
exponents. ForD52, the case exhibited in panel~c!, roughly
one quarter of the chaotic orbits are noticeably ‘‘sticky,’’ f
D56, the case in panel~d!, the fraction is reduced to abou
5%. In either case, analysis of a sample that exclu
‘‘sticky’’ segments yields an autocorrelation function that d
cays substantially more quickly.

As noted by Casettiet al., if the autocorrelation function
is in fact well approximated by Eq.~4.13! the time scale
identified geometrically in Eq.~4.12! should coincide with
the time scale~4.14!. This prediction was tested numerical
and found typically to be satisfied to within factors of;2,
although some discrepancies were observed. As noted
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ready, a direct determination oft using Eq. ~5.2! proved
unreliable.

Perhaps the most striking point is that, at least wh
‘‘stickiness’’ is comparatively unimportant, the Casettiet al.
time scalet given by Eq. ~4.13! and the time scaletosc
exhibit very similar scaling with energyE. This is illustrated
in Figs. 9~e! and 9~f!, which exhibit both time scales as func
tions of E for the D52 and 6 dihedral potential. In eac
case, the time scaletosc is somewhat longer than the Case
et al. time scalet. Significantly, though, forD52, the quan-
tities tosc andt exhibit very different scalings at higher en
ergies, precisely where ‘‘stickiness’’ is most prominent.

3. Sources of uncertainty

Granted the assumption of a Gaussian distribution of c
vatures, the predicted value of the largest Lyapunov ex
nent depends on only three quantities, namely^K&, dK, and
t; and as such, it is natural to ask how the predicted va
xest varies if any of these inputs are changed.

If one introduces a simultaneous scaling of both^K& and
dK, i.e., ^K&→a^K& anddK→adK, with a of order unity,
xest→a1/2xest. If, alternatively, ^K& is held fixed butdK
→adK, one infers, at least approximately, thatxest
→a3/2xest. Finally, if ^K& and dK are held fixed, but one
allows for a scalingt→at,xest→axest.

FIG. 9. ~a! The autocorrelation functionG(t) for chaotic orbits
in the D52 dihedral potential withE520.5. ~b! The same forD
56 and E520.5. ~c! The same forD52 and E56.0. ~c! The
same forD56 andE56.0.~e! The Casettiet al. time scalet of Eq.
~4.12! ~solid line! and the time scaletosc/4p of Eq. ~4.14! ~dashed
line!, for chaotic orbits in theD52 dihedral potential at differen
energiesE. ~f! The same forD56.
4-10
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Given that the values of̂K& and dK can be estimated
quite well using simple dimensional arguments—recall th
even when there are relatively large measures of perio
orbits, a microcanonical population yields estimates in go
agreement with the results of direct numeric
computation—it would seem that, with the assumption
quasi-isotropy and a Gaussian distribution of curvatures,
largest source of error should be in the determination of
autocorrelation timet. The expression fort motivated by
Casettiet al. is moread hocthan the expression for^K& and
dK; and dimensional arguments are hard pressed to y
estimates oft that are accurate to better than a factor of tw
However, factors of two uncertainty int translate directly
into factors of two uncertainty inxest.

One may also investigate how the predictedxest changes
if one relaxes the assumption of a Gaussian distribution,
stead computingxestby solving Eq.~4.9! numerically for the
distribution N@K# generated either from a microcanonic
distribution or from real orbital data. The resulting change
xest will of course depend on the degree to whichN@K#
deviates from a Gaussian, larger deviations resulting in la
changes. Especially for two-dimensional systems, wh
N@K# is far from Gaussian, allowing for the correct distrib
tion may changexest by a factor of three, or even more.

This is illustrated in Fig. 10, which exhibits several d
ferent estimates of the largest Lyapunov exponentsxest for
theD52 dihedral potential, most of which will be describe
in Sec. VI. In the present context, note simply~i! the ‘‘true’’
xnum, generated by tracking a small initial perturbatio
~solid line!, ~ii ! the Casettiet al. xest, based on the assump
tion of Gaussian fluctuations and an autocorrelation ti
given by Eq.~4.13! ~short dashes!; and ~iii ! an alternative
xest, again based on the ‘‘quasi-isotropized’’ Eq.~4.9!, but
now allowing for a distributionN@K# generated from time-
series data and an autocorrelation time~4.15! ~long dashes!.
Both estimates are comparable in magnitude toxnum, but
both miss the nontrivial dip that arises nearE50.0.

VI. ESTIMATES OF LYAPUNOV EXPONENTS IN LOWER-
DIMENSIONAL HAMILTONIAN SYSTEMS

A. Estimates of the true Lyapunov exponent

Overall, Eq.~4.15! first proposed by Casettiet al., modi-
fied to allow for moments computed assuming a micro
nonical distribution, appears to give reasonable estimate
the largest Lyapunov exponent in lower-dimensional Ham
tonian systems, provided that an appreciable fraction of
phase space corresponds to chaotic orbits. In particula
long as the true Lyapunov exponents are not very sm
(xnum!tD

21) and/or ‘‘stickiness’’ is not especially prominen
the estimatedxest typically agree with the numericalxnum to
within factors of two. In some cases, such as for the F
model, the agreement betweenxnum and xest rapidly in-
creases with increasingD; but in other cases, such as for th
dihedral potential, this isnot the case. This would sugge
that the quasi-isotropy assumption, which should become
creasingly justified in higher dimensions, isnot necessarily
the principal source of error.
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Figure 11 compares the numerical and estimatedx(E) for
the dihedral potential forD52, 3, 4, and 6. The estimate
values were computed using Eq.~4.13!, based on a Gaussia
distribution, with moments generated both from a time-ser
analysis~dashed lines! and assuming a microcanonical di
tribution ~dotted lines!. The numerical values are connecte
with a solid line. One observes significant differences in
shapes of the curves associated with the numerical and
mated values, but there is invariably an overall agreemen
within a factor of two. The most striking discrepancies ar
for D52, where the estimates completely miss the abrupt

FIG. 10. Estimated values of the largest Lyapunov exponent
theD52 dihedral potential as a function of energy:xnum generated
from direct numerical integration~solid curve!, the Casettiet al.
value, generated assuming a GaussianN@K# and autocorrelation
time t given by Eq.~4.12! ~short dashes!; an estimate based on Eq
~4.8!, but now using theN@K# generated from a time-series analys
andt given by Eq.~4.14! ~long dashes!; an estimate based on Eq
~6.6!, using v2 and t given by Eq.~4.14! ~dot dashes!; and an
estimate based on the coupled oscillator system, assuming Gau
fluctuations andt given by Eq.~4.12!.

FIG. 11. Estimated values of Lyapunov exponents for orbits
the dihedral potential, generated from numerical integrations~solid
lines! and estimated using Eq.~4.12!. ~a! For D52. ~b! D53. ~c!
D54. ~d! D56.
4-11
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in xnum for E;0. The fact that, forD52, the two estimated
curves differ significantly at high energies reflects the f
that the constant energy hypersurface contains large reg
islands, so that the invariant distribution is far from micr
canonical.

Figure 12 exhibits the numerical and estimatedx(E) for
the FPU model forD54, 5, and 6, with the estimated value
again computed assuming Gaussian distributions and
ments generated from a time-series analysis. The data
been plotted on a log-log plot to facilitate comparison w
Fig. 3 in Casettiet al. Here, two points are immediately ob
vious: ~1! The estimated and numerical curves are distinc
different, withxest always larger thanxnum, but their curva-
tures are comparatively similar.~2! The agreement betwee
xnum andxestbecomes progressively better for higher dime
sions and for higher energies. ForE55 in D54, where the
numerical xnum50.211 corresponds to a very long timet
;45@tD ,xest overestimatesxnum by nearly a factor of
seven. ForD56 andE55, xestyields a value approximately
2.65 times too large; forE510 240, its value is only 1.27
times too large.

Figure 13~a! exhibits the same data for the sixth-ord
truncation of the Toda potential. As for the FPU model,xest
systematically overestimates the truexnum, the largest errors
arising at low energies, wherexnum is comparatively small,
larger regular islands exist, and ‘‘stickiness’’ is especia
important.

B. Short-time Lyapunov exponents

The computations described in the preceding subsec
indicate that, for a variety of lower-dimensional systems,
Casettiet al. model of a stochastic-oscillator equation yiel

FIG. 12. Estimated values of Lyapunov exponents for orbits
the FPU model, generated from numerical integrations~solid lines!
and estimated using Eq.~4.12!. ~a! For D54. ~b! D55. ~c! D56.
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reasonable estimates of the largest Lyapunov exponentx as a
function of energyE. However, if the stochastic-oscillato
picture is to be accepted as completely valid, one must a
demand that it ‘‘explain’’ the varying degrees of chaos ma
fested by different chaotic orbit segments with the same
ergy, as probed by short-time Lyapunov exponents. In p
ticular, one might hope that, even if the estimated valuesxest
of the true Lyapunov exponent disagree significantly with
valuesxnum computed numerically, the estimated and co
puted values of short-time Lyapunov exponents for differ
orbit segments with the same energy should be strongly
related. For example, chaotic segments for which the t
short-time xnum is especially small should yield estimate
xest that are also especially small.

That such correlations do in fact exist is illustrated
Figs. 13~b! and 13~c! and Fig. 14, which exhibit results ap
propriate for, respectively, the truncated Toda and dihed
potentials. Each of these figures was generated by~i! select-
ing a representative ensemble of 1000 initial conditions,
with the same energy;~ii ! evolving these into the future for a
time T51024 while simultaneously tracking the evolution
a small perturbation so as to generatexnum; ~iii ! recording
the values ofK for each orbit at fixed intervalsdt50.4; ~iv!
analyzing each orbit to extract^K& and dK; and ~v! using
these two moments along with Eq.~4.13! to generate an
estimatedxest. The scatter plots provide unambiguous visu
confirmation that the values ofxnum and xest are strongly
correlated.

This visual impression may be quantified by computi
the Spearman rank correlationR between the values ofxest

n FIG. 13. ~a! Estimated values of Lyapunov exponents for orb
in the truncated Toda potential, generated from numerical inte
tions ~solid lines! and estimated using Eq.~4.12!. ~b! Short-time
Lyapunov exponents computed using Eq.~4.12! (xest) and gener-
ated from numerical integrations (xnum) for E530.0.~c! The same
for E550.0.
4-12
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andxnum in each ensemble, which satisfies

R~xnum,xest!512
6

N32N (
i 51

N

d i
2. ~6.1!

HereN51000 denotes the number of orbits in the ensem
andd i denotes the difference in rank for thei th orbit when
ordered in terms ofxnum and xest. R51 corresponds to a
perfect correlation;R521.0 corresponds to a comple
anti-correlation.

The data sets in Figs. 13~b! and 13~c!, corresponding to
E530 and 50 in the truncated Toda potential, both yieldR
'0.88. The data sets in Figs. 14~a!–14~e!, corresponding to
E51.0 in the dihedral potential, yield rank correlations ran
ing between a low ofR'0.85 for D53 and a high ofR
'0.95 for D52. The especially high-rank correlation fo
D52 might seem surprising since the ensemble contain
large number of regular orbit segments, with very sm
xnum. The reasonR remains as large as it does is that, f
orbit segments that are manifestly regular, so thexnum even-
tually decays to zero, there is a correlation between the e
mated valuexest and the rate at whichxnum tends to zero: for
regular orbits where the short-timexest is especially large,
the convergence is especially slow, so that, at finite tim
xnum will also be especially large@18#.

Not surprisingly, the computed value ofR for a given
ensemble of initial conditions depends on the total integ
tion time. If the orbits be integrated for a sufficiently largeT,
their differences tend to ‘‘wash out,’’ so that the observ
range of values forxnum andxest both decrease. Eventually

FIG. 14. ~a! Short-time Lyapunov exponents computed usi
Eq. ~4.12! (xest) and generated from numerical integrations (xnum)
for E51.0 in the D52 dihedral potential.~b! The same forD
53. ~c! D54. ~d! D55. ~e! D56. ~f! xnum for D56 contrasted
with revised estimatesxestgenerated by rescaling the time scalet of
Eq. ~4.12! by a factor of 0.75.
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the differences between different orbit segments beco
small and the pronounced correlation disappears.

It would seem visually from Figs. 14~a!–14~e! that the
numerical and estimated values of the short-time Lyapu
exponents deviate largely because of some overall sca
Given that at least forD>3, the phase space is almost e
tirely chaotic, so that the distribution of curvatures reflect
microcanonical distribution, the evidence~cf. Fig. 6! that this
implies a nearly Gaussian distribution, and the argumen
the preceding subsection that quasi-isotropy is not neces
ily the principal source of discrepancies, it would seem na
ral to conjecture that this reflects a misidentification of t
proper autocorrelation timet. Panel ~f! in Fig. 14 shows
what happens to the estimated valuexest for the D56 dihe-
dral potential if, for each orbit,t is reduced by a factor o
'0.75, the value required to ensure that, for the ensem
the mean values of the estimated and numerical expon
coincide, i.e.,̂ xest&5^xnum&. The net result is that, to a fai
degree of approximation, the data points are aligned al
xest5xnum.

C. The special caseDÄ2

It is natural to ask whether one can relax the assump
of quasi-isotropy, at least forD52, where it would seem
most suspect. One way in which to do this would be to wo
instead with the Jacobi metric, which, forD52, leads to a
single oscillator equation of the form@7,19#

d2j

dt2
2

1

W

dW

dt

dj

dt
1K̃j50, ~6.2!

whereW5E2V(qi) denotes the kinetic energy and

K̃5DV1
1

W
u¹Vu2. ~6.3!

Unfortunately, however, this equation is very difficult to e
plore numerically since it yields near-divergences forW
'0, which prove quite common forD52.

Alternatively, within the setting discussed hitherto in th
paper, there are two ways in which one might proceed:

~1! Consider the full multidimensional Jacobi equatio
and view it as a matrix stochastic equation. This could
least provide the ‘‘average’’ rate of exponential instability
different configuration space directions. Quite generally
small perturbationj i will satisfy

d2j i

dt2
1(

j
Vi j j

j50, ~6.4!

with Vi j []2V/]qi]qj the second derivative matrix. The ob
jective then is to view each component of this matrix as
~approximately! independent stochastic variable, i.e., cons
ering

Vi j 5Vji 5V0,i j 1dV i j , ~6.5!
4-13
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KANDRUP, SIDERIS, AND BOHN PHYSICAL REVIEW E65 016214
with dV i j a random variable. Given distributionsN@Vxx#,
N@Vyy#, andN@Vxy#5N@Vyx#, which can be computed from
time-series data or assuming ergodicity, and some appr
mation to the autocorrelation functionsGxx , Gyy , andGxy ,
which may again be motivated either from a time series
assuming ergodicity, this system is easy to solve numeric
@20#.

~2! At least forD52, it is easy to diagonalize the matri
Eq. ~4.2! at any given instant so as to obtain the eigenval
of the stability matrix. The corresponding eigenvectors w
then satisfy equations of the form

d2j6

dt2
1v6j650, ~6.6!

where the time-independent eigenvalues satisfy

v65 1
2 ~Vxx1Vyy!6 1

2 @~Vxx2Vyy!
214Vxy

2 #1/2. ~6.7!

Viewing v65V0,61dV6 as stochastic variables leads to
pair of decoupled-oscillator equations that are easy to s
numerically. In general, one might anticipate that the sma
eigenvalue will correspond to the more rapid growth rate

These alternatives were tested in detail for theD52 di-
hedral potential. The principal results are summarized in F
10, which shows the numericalxnum(E) ~solid line! as well
as estimated valuesxest(E) generated in four different ways
The short- and long-dashed lines, discussed already in
preceding section, correspond to the isotropized Eq.~4.9!,
assuming a microcanonical distribution~short dashes! or us-
ing inputs generated from orbital data~long dashes!. The
triple-dot-dashed curve represents the values generate
the coupled-oscillator system and the dot-dashed curve
resents the values generated by solving Eq.~6.6! for v2 . All
the estimated curves yield valuesxest that agree withxnum to
within factor of two, but none seems especially better th
the others.

The hypothesis that chaotic behavior in lowe
dimensional Hamiltonian systems may be modeled b
stochastic-oscillator equation would appear robust in
sense that different implementations all lead to predicti
that yield at least rough agreement with numerical integ
tions. However, none of the alternatives considered h
would appear ‘‘completely right.’’ It seems likely that, i
very low-dimensional systems, the details matter sufficien
that no universal prescription will yield a completely acc
rate prediction.

VII. CONCLUSIONS AND DISCUSSION

The results described in this paper strongly corrobor
the intuition that chaotic motion in lower-dimension
Hamiltonian systems may be visualized as random, so
the average instability of chaotic orbits, and hence, the
ues of their largest Lyapunov exponents, can be derived f
a harmonic-oscillator equation with a randomly varying fr
quency. Modulo straightforward modifications, technic
rather than conceptual in nature, the approach introduce
Casettiet al. for higher-dimensional systems also works re
sonably well for systems with dimensionality as low asD
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52. In this sense, as suggested in the Introduction,
would appear to have a clear alternative paradigm in term
which to interpret the origins of chaos in lower-dimension
Hamiltonian systems.

The precise numerical values ofx predicted using this
analytic approach are somewhat less accurate in lower
mensions than they are for much largerD, but it remains true
that, in general, this approach yields predictions that are
rect to within a factor of two. In principle, one might hope
do still better but, as a practical matter, this would se
difficult if not impossible. The ‘‘obvious’’ alternatives con
sidered in Sec. VI C yield somewhat different predictions
the largest Lyapunov exponents. In some cases, these pr
tions are somewhat better than those based on Eqs.~4.12!,
~4.15!, and~4.16! but, overall, they seem neither appreciab
better nor appreciably worse. This would suggest that
predictions based on these equations are comparatively
bust, in the sense that minor modifications do not yield vas
different results. However, this might also suggest that th
is no single, universal modification that one might introdu
that would yield near-perfect agreement for all potentials a
energies. In point of fact, this is hardly surprising. There
every reason to expect that details that should ‘‘wash out’
higher-dimensional systems will remain important in lowe
dimensional systems. A ‘‘thermodynamic’’ description
chaos should work best for systems with many degrees
freedom.

In this context, two significant points should be stresse

~1! Even when the predicted valuesxest(E) of the ‘‘true’’
Lyapunov exponentxnum(E) are off by as much as a facto
of two, one observes strong correlations betweenxest(E) and
xnum(E) for different orbit segments with the same energ
Orbit segments for which the predictedxest is low tend to
have small short-time exponentsxnum; and, similarly, seg-
ments for whichxest is high tend to have larger values o
xnum. The physics entering into Eqs.~4.12!, ~4.15!, and
~4.16! allow one to distinguish clearly between orbit se
ments that are ‘‘wildly chaotic’’ in visual appearance an
have especially large short-time exponents and ‘‘sticky’’ se
ments that are nearly regular in appearance and have c
paratively small short-time exponents.

~2! The largest discrepancies between the predicted
numerically computed Lyapunov exponents occur invaria
for those potentials and energies where large portions of
chaotic sea correspond to ‘‘sticky’’ orbits manifesting nea
regular behavior, in which casexest can be much larger than
the ‘‘true’’ xnum. This is exactly what one would expect.
large portions of the stochastic sea are ‘‘sticky,’’ an orbit w
spend much of its time evolving in a nearly regular fashio
but it is clear that, while manifesting such near-regular b
havior, its motion cannot be characterized as essentially
dom. Indeed, as discussed more carefully elsewhere@7#, cha-
otic orbit segments for whicĥK& and dK assume values
close to those characteristic of regular orbits tend system
cally to have very small short-time Lyapunov exponents.

The principal difference between the approach develo
in this paper and the approach introduced by Casettiet al. is
that the statistical properties of the mean curvatureK are not
4-14
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derived assuming a canonical distribution. For a truly co
servative system, a thermodynamic description must, stri
speaking, be based on a microcanonical distribution, and
only for largeD that one can approximate such a ‘‘correc
description by a description based on a canonical distr
tion. Moreover, for very low dimensions, especiallyD52,
even a microcanonical distribution is clearly unjustified.
microcanonical analysis is based on the assumption tha
entire constant-energy hypersurface is chaotic, but for lo
dimensions, nonintegrable systems typically exhibit a co
istence of regular and chaotic regions, both with signific
measure. A correct analysis must involve deriving the sta
tics of the curvature only in the chaotic phase-space regi
a task that seems difficult analytically but, given an assum
tion of ergodicity, is straightforward to implement via a tim
series analysis.

In part, this work concerning chaos and the phase mix
of chaotic orbits was motivated in the context of nonequil
rium systems comprised of a large number of interact
particles. Examples of such systems include self-gravita
systems, e.g., galaxies, and charged-particle beams gove
by external focusing forces and internal Coulomb forc
~space charge!. For both these examples, fast evolutiona
time scales have profound consequences. For galaxies,
are an integral part of the formation process@21#. For beams,
they limit the degree to which an accelerator designer m
preserve the beam quality, especially insofar as the evolu
is irreversible@22#.

As mentioned in Sec. II, one way to infer the fastest tim
scale is to consider the interaction of a single particle w
the coarse-grained potential formed by all the other partic
The problem then reduces to one involving a lo
dimensional Hamiltonian, and the obvious question is
what extent statistical arguments concerning the behavio
chaotic single-particle orbits may be invoked to simplify t
analysis further. All the examples presented herein sug
that time scales in low-dimensional Hamiltonian systems
ferred via the statistical methods of Casettiet al. are typi-
cally valid within a factor of order two. They also sugge
that uncertainties in the computation of these time scales
principally associated with uncertainties in the autocorre
tion time, and that these time scales are comparatively in
sitive to the choice of the invariant measure that weights
statistical averages. More importantly, however, our
amples reinforce the idea advanced by Cerruti-Sola and
tini @23# that rapid mixing originates from parametric inst
bility due to positive-curvature fluctuations along th
geodesic trajectories of the particles over the configurat
space manifold. Cerruti-Sola and Pettini conjectured th
‘‘This mechanism is apparently the most relevant—and
many cases unique—source of chaoticity in physically me
ingful Hamiltonians.’’ The diverse set of examples presen
here would seem to corroborate their conjecture.

The statistical analysis, however, does carry somecave-
ats. It generally ‘‘predicts’’ fast exponential mixing in poten
01621
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tials that are knowna priori to be integrable and thereb
admit only regular orbits that can only mix secularly. E
amples include spherically symmetric potentials for whi
Poisson’s equation generates nonuniform density distr
tions, and special triaxial potentials such as the Staeckel
tentials@24#. Thus, the analysis provides no information as
what criteria are necessary and sufficient to establish a
ponderance of globally chaotic orbits; it merely hypothesiz
their existence. Related to this deficiency is the failure of
analysis to account for ‘‘sticky’’ chaotic orbit segments tha
when present, will tend to slow down the mixing. Real sy
tems may, however, mitigate thesecaveats. For example, ex-
ternal noise, even with very small amplitude, is known
add greatly to the efficiency of chaotic mixing by overcom
ing ‘‘stickiness’’ @25#. And the presence of localized irregu
larities that have been coarse-grained away may increase
chaoticity of the orbits. An important point, however, is th
the graininess that manifests itself in binary particle inter
tions isnot necessarily an example of such localized irreg
larities. Graininess establishes diffusion of an orbit aw
from the trajectory it would have in the smooth potential b
at least for nonchaotic orbits, this diffusion involves a sec
lar, rather than exponential, divergence of trajectories@26#.

Because it is based on the Eisenhart metric, the pre
treatment is restricted to stationary systems. However, wi
Finsler metric, the geometric method may also incorpor
potentials that are explicitly time dependent and/or veloc
dependent@27#. For example, recent work involving th
Hénon-Heiles potential@28# resulted in a geometric measu
of chaos over the associated Finsler manifold that was u
for fast computation of the system’s Poincare´ surface of sec-
tion. If used with a coarse-grained potential, the Eisenh
metric includes no mechanism for changing the particle
ergies. In principle, it may be included with a Finsler met
based on a time-dependent coarse-grained potential; h
ever, the generalization also requires specifying a suita
invariant measure for the nonequilibrium system@29#.

One final point should be noted. In writing this paper, t
authors have deliberately adopted a tact somewhat com
mentary to that adopted by Casettiet al. Rather than focus-
ing on the differential geometry of spaces admitting
Eisenhart metric, the discussion has, to the extent poss
been couched in the language of conventional Hamilton
mechanics. Such an approach serves to make the idea
derlying the general approach more transparent physic
and, it is hoped, will make the picture of chaotic motion a
random process comprehensible to a substantially larger
dience.
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